A gradient method exploiting the two dimensional quadratic termination property(6月3日)
报告人:黄亚魁   日期:2023年05月30日 20:56  

报告题目: A gradient method exploiting the two dimensional quadratic termination property

报告人:黄亚魁

单   位:河北工业大学

时   间:6月3日 16:00

地   点:河南大学龙子湖校区九章学堂C座302


 

报告摘要:The quadratic termination property is important to the efficiency of gradient methods. We consider equipping a family of gradient methods, where the stepsize is given by the ratio of two norms, with two dimensional quadratic termination. Such a desired property is achieved by cooperating with a new stepsize which is derived by maximizing the stepsize of the considered family in the next iteration. By adaptively taking the long Barzilai-Borwein stepsize and reusing the new stepsize with retard, we propose an efficient gradient method for unconstrained quadratic optimization. We prove that the new method is -linearly convergent with a rate of , where  is the condition number of Hessian. Numerical experiments show the efficiency of our proposed method.


 

 

报告人简介:黄亚魁,河北工业大学准聘教授,2015年博士毕业于西安电子科技大学,2015年7月至2017年5月在中国科学院数学与系统科学研究院从事博士后研究,曾在美国路易斯安那州立大学访问一年。主要研究兴趣包括梯度类算法理论及应用、大规模机器学习和分布式优化等领域的一阶算法,相关成果发表在SIAM Journal on Optimization、Journal of Scientific Computing、Computational Optimization and Applications等期刊,主持国家自然科学基金、河北省自然科学基金和中国博士后基金等科研项目。现任中国运筹学会数学规划分会理事、河北省运筹学会理事。