Global algorithms for several classes of nonconvex optimization problems(5月15日)
报告人:焦红伟   日期:2024年05月14日 09:28  

报告题目:Global algorithms for several classes of nonconvex optimization problems

主  讲 人:焦红伟 教授

单      位:河南科技学院

时      间:2024年5月15号16:00

地      点:郑州校区九章学堂C座302


摘      要:In this report, we aim to find the global optimal solutions of several classes of nonconvex optimization problems, which have numerous applications in many fields of economy and engineering. First of all, by utilizing the piecewise linear relaxation method and region reducing technique, we propose an image space branch-reduction-bound algorithm for linear multiplicative problems. Secondly,based on the second-order cone relaxation and adaptive branching method, we propose an adaptive branch-and-bound algorithm for min-max linear fractional problem. Thirdly,by utilizing two-stage linear relaxation method and image space reduction technique, we propose an image space branch-reduction-bound algorithm for generalized linear fractional problem. We prove the global convergence of these algorithms and estimate maximum number of iterations in the worst-case scenario. Finally, numerical results verify the efficiency of these algorithms.


简     介:焦红伟,男,教授,博士,河南科技学院数学科学学院副院长,河南省青年骨干教师,河南省教育厅学术技术带头人,中国运筹学会数学规划分会理事,中国运筹学会算法软件与应用分会理事,河南省运筹学会青年工作委员会主任。研究方向为:最优化理论、算法及应用。近年来,主持国家自然科学基金面上项目、中国博士后科学基金面上项目、河南省基础与前沿技术研究项目、河南省重点研发与科技推广项目等项目12项;在《European Journal of Operational Research》、《Journal of Optimization Theory and Applications》、《Journal of Global Optimization》等国内外学术期刊上发表论文80余篇,其中被SCI收录60余篇;在科学出版社出版《全局优化问题的分支定界方法》专著1部;获河南省自然科学二等奖1项。